Floquet engineering with quasienergy bands of periodically driven optical lattices

نویسنده

  • Martin Holthaus
چکیده

A primer on the Floquet theory of periodically time-dependent quantum systems is provided, and it is shown how to apply this framework for computing the quasienergy band structure governing the dynamics of ultracold atoms in driven optical cosine lattices. Such systems are viewed here as spatially and temporally periodic structures living in an extended Hilbert space, giving rise to spatio-temporal Bloch waves whose dispersion relations can be manipulated at will by exploiting ac-Stark shifts and multiphoton resonances. The elements required for numerical calculations are introduced in a tutorial manner, and some example calculations are discussed in detail, thereby illustrating future prospects of Floquet engineering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Superfluid-insulator transition in a periodically driven optical lattice.

We demonstrate that the transition from a superfluid to a Mott insulator in the Bose-Hubbard model can be induced by an oscillating force through an effective renormalization of the tunneling matrix element. The mechanism involves adiabatic following of Floquet states, and can be tested experimentally with Bose-Einstein condensates in periodically driven optical lattices. Its extension from sma...

متن کامل

Spin-momentum coupled Bose-Einstein condensates with lattice band pseudospins

The quantum emulation of spin-momentum coupling, a crucial ingredient for the emergence of topological phases, is currently drawing considerable interest. In previous quantum gas experiments, typically two atomic hyperfine states were chosen as pseudospins. Here, we report the observation of a spin-momentum coupling achieved by loading a Bose-Einstein condensate into periodically driven optical...

متن کامل

Classical and Quantum Dynamics of a Periodically Driven Particle in a Triangular Well

We investigate the correspondence between classical and quantum mechanics for periodically time dependent Hamiltonian systems, using the example of a periodically forced particle in a one-dimensional triangular well potential. In particular, we consider quantum mechanical Floquet states associated with resonances in the classical phase space. When the classical motion exhibits subharmonic reson...

متن کامل

Observation of photonic anomalous Floquet topological insulators

Topological insulators are a new class of materials that exhibit robust and scatter-free transport along their edges - independently of the fine details of the system and of the edge - due to topological protection. To classify the topological character of two-dimensional systems without additional symmetries, one commonly uses Chern numbers, as their sum computed from all bands below a specifi...

متن کامل

Coherent states of the driven Rydberg atom: Quantum-classical correspondence of periodically driven systems

A methodology to calculate generalized coherent states for a periodically driven system is presented. We study wave packets constructed as a linear combination of suitable Floquet states of the three-dimensional Rydberg atom in a microwave field. The driven coherent states show classical space localization, spreading, and revivals and remain localized along the classical trajectory. The microwa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015